Affiliation:
1. Department of Computer Science, University of Illinois at Urbana-Champaign
Abstract
Speculative parallelization aggressively executes in parallel codes that cannot be fully parallelized by the compiler. Past proposals of hardware schemes have mostly focused on single-chip multiprocessors (CMPs), whose effectiveness is necessarily limited by their small size. Very few schemes have attempted this technique in the context of scalable shared-memory systems.
In this paper, we present and evaluate a new hardware scheme for scalable speculative parallelization. This design needs relatively simple hardware and is efficiently integrated into a cache-coherent NUMA system. We have designed the scheme in a hierarchical manner that largely abstracts away the internals of the node. We effectively utilize a speculative CMP as the building block for our scheme.
Simulations show that the architecture proposed delivers good speedups at a modest hardware cost. For a set of important non-analyzable scientific loops, we report average speedups of 4.2 for 16 processors. We show that support for per-word speculative state is required by our applications, or else the performance suffers greatly.
Publisher
Association for Computing Machinery (ACM)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献