Complex fans

Author:

Flores Juan1

Affiliation:

1. Univ. Michoacana, Michoacán, Mexico

Abstract

If we allow the magnitude and angle of a complex number (expressed in polar form) to range over an interval, it describes a semicircular region, similar to a fan; these regions are what we call complex fans. Complex numbers are a special case of complex fans, where the magnitude and angle are point intervals. Operations (especially addition) with complex numbers in polar form are complicated. What most applications do is to convert them to rectangular form, perform operations, and return the result to polar form. However, if the complex number is a Complex Fan, that transformation increases ambiguity in the result. That is, the resulting Fan is not the smallest Fan that contains all possible results. The need for minimal results took us to develop algorithms to perform the basic arithmetic operations with complex fans, ensuring the result will always be the smallest possible complex fan. We have developed the arithmetic operations of addition, negation, subtraction, product, and division of complex fans. The algorithms presented in this article are written in pseudocode, and the programs in Common Lisp, making use of CLOS (Common Lisp Object System). Translation to any other high-level programming language should be straightforward.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference13 articles.

1. ALEFELD G. AND HERZBERGER J. 1983. Introduction to Interval Computation. Academic Press Inc. New York NY. ALEFELD G. AND HERZBERGER J. 1983. Introduction to Interval Computation. Academic Press Inc. New York NY.

2. CONANT R. 1993. Engineering Circuit Analysis with PSpice and Probe. McGraw-Hill Inc. New York NY. CONANT R. 1993. Engineering Circuit Analysis with PSpice and Probe. McGraw-Hill Inc. New York NY.

3. FLORES g. g. 1997. Reasoning about linear circuits in sinusoidal steady state. Ph.D. Dissertation. FLORES g. g. 1997. Reasoning about linear circuits in sinusoidal steady state. Ph.D. Dissertation.

4. G NEN T. 1988. Modern Power System Analysis. John Wiley & Sons Inc. New York NY. G NEN T. 1988. Modern Power System Analysis. John Wiley & Sons Inc. New York NY.

5. GRAINGER J. J. AND STEVENSON W. D. 1994. Power System Analysis. McGraw-Hill Inc. New York NY. GRAINGER J. J. AND STEVENSON W. D. 1994. Power System Analysis. McGraw-Hill Inc. New York NY.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Arithmetic of Complex Fans;ACM Transactions on Mathematical Software;2021-04

2. On Complex Interval Arithmetic Using Polar Form;GAZI UNIVERSITY JOURNAL OF SCIENCE;2021-03-02

3. Polar Affine Arithmetic;ACM Transactions on Mathematical Software;2019-03-28

4. Guaranteed tuning of PID controllers for parametric uncertain systems;2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601);2004

5. Interval Arithmetic and Interval Analysis: An Introduction;Granular Computing;2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3