Polar Affine Arithmetic

Author:

Wang Shouxiang1,Wang Kai1,Wu Lei2,Wang Chengshan1

Affiliation:

1. Tianjin University, Tianjin, China

2. Clarkson University, Potsdam, NY USA

Abstract

Uncertainties practically arise from numerous factors, such as ambiguous information, inaccurate model, and environment disturbance. Interval arithmetic has emerged to solve problems with uncertain parameters, especially in the computational process where only the upper and lower bounds of parameters can be ascertained. In rectangular coordinate systems, the basic interval operations and improved interval algorithms have been developed in the numerical analysis. However, in polar coordinate systems, interval arithmetic still suffers from issues of complex computation and overestimation. This article defines a polar affine variable and develops a polar affine arithmetic (PAA) that extends affine arithmetic to the polar coordinate systems, which performs better in many aspects than the corresponding polar interval arithmetic (PIA). Basic arithmetic operations are developed based on the complex affine arithmetic. The Chebyshev approximation theory and the min-range approximation theory are used to identify the best affine approximation. PAA can accurately keep track of the interdependency among multiple variables throughout the calculation procedure, which prominently reduces the solution conservativeness. Numerical examples implemented in MATLAB programs show that, compared with benchmark results from the Monte Carlo method, the proposed PAA ensures completeness of the exact solution and presents a more compact solution region than PIA when dependency exists in the calculation process. Meanwhile, a comparison of affine arithmetic in polar and rectangular coordinates is presented. An application of PAA in circuit analysis is quantitatively presented and potential applications in other research fields involving complex variables in polar form will be gradually developed.

Funder

National Natural Science Foundation of China

U.S. National Science Foundation grants

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference27 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3