Software Rasterization of 2 Billion Points in Real Time

Author:

Schütz Markus1,Kerbl Bernhard1,Wimmer Michael1

Affiliation:

1. TU Wien, Austria

Abstract

The accelerated collection of detailed real-world 3D data in the form of ever-larger point clouds is sparking a demand for novel visualization techniques that are capable of rendering billions of point primitives in real-time. We propose a software rasterization pipeline for point clouds that is capable of rendering up to two billion points in real-time (60 FPS) on commodity hardware. Improvements over the state of the art are achieved by batching points, enabling a number of batch-level optimizations before rasterizing them within the same rendering pass. These optimizations include frustum culling, level-of-detail (LOD) rendering, and choosing the appropriate coordinate precision for a given batch of points directly within a compute workgroup. Adaptive coordinate precision, in conjunction with visibility buffers, reduces the required data for the majority of points to just four bytes, making our approach several times faster than the bandwidth-limited state of the art. Furthermore, support for LOD rendering makes our software rasterization approach suitable for rendering arbitrarily large point clouds, and to meet the elevated performance demands of virtual reality applications.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference44 articles.

1. Pascal Bormann and Michel Krämer . 2020 . A System for Fast and Scalable Point Cloud Indexing Using Task Parallelism . In Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference, Silvia Biasotti, Ruggero Pintus, and Stefano Berretti (Eds.). The Eurographics Association. https://doi.org/10 .2312/stag.20201250 10.2312/stag.20201250 Pascal Bormann and Michel Krämer. 2020. A System for Fast and Scalable Point Cloud Indexing Using Task Parallelism. In Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference, Silvia Biasotti, Ruggero Pintus, and Stefano Berretti (Eds.). The Eurographics Association. https://doi.org/10.2312/stag.20201250

2. The Visibility Buffer: A Cache-Friendly Approach to Deferred Shading;Burns Christopher A.;Journal of Computer Graphics Techniques (JCGT),2013

3. Sequential point trees

4. Geometry compression

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Decompression and Rasterization of Massive Point Clouds;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2024-08-09

2. SimLOD: Simultaneous LOD Generation and Rendering for Point Clouds;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2024-05-11

3. Multi-layer Caching and Parallel Streaming for Large Scale Cloud Optimized Point Cloud Data Visualization using WebGPU;2023 IEEE International Conference on Big Data (BigData);2023-12-15

4. Inovis: Instant Novel-View Synthesis;SIGGRAPH Asia 2023 Conference Papers;2023-12-10

5. View-dependent Adaptive HLOD: real-time interactive rendering of multi-resolution models;Proceedings of the 20th ACM SIGGRAPH European Conference on Visual Media Production;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3