Real-Time Decompression and Rasterization of Massive Point Clouds

Author:

Goel Rahul1ORCID,Schütz Markus2ORCID,Narayanan P. J.1ORCID,Kerbl Bernhard2ORCID

Affiliation:

1. IIIT Hyderabad, India

2. TU Wien, Austria

Abstract

Large-scale capturing of real-world scenes as 3D point clouds (e.g., using LIDAR scanning) generates billions of points that are challenging to visualize. High storage requirements prevent the quick and easy inspection of captured datasets on user-grade hardware. The fastest real-time rendering methods are limited by the available GPU memory and render only around 1 billion points interactively. We show that we can achieve state-of-the-art in both while simultaneously supporting datasets that surpass the capabilities of other methods. We present an on-the-fly point cloud decompression scheme that tightly integrates with software rasterization to reduce on-chip memory requirements by more than 4×. Our method compresses geometry losslessly and provides high visual quality at real-time framerates. We use a GPU-friendly, clipped Huffman encoding for compression. Point clouds are divided into equal-sized batches, which are Huffman-encoded independently. Batches are further subdivided to form easy-to-consume streams of data for massively parallel execution. The compressed point clouds are stored in an access-aware manner to achieve coherent GPU memory access and a high L1 cache hit rate at render time. Our approach can decompress and rasterize up to 120 million Huffman-encoded points per millisecond on-the-fly. We evaluate the quality and performance of our approach on various large datasets against the fastest competing methods. Our approach renders massive 3D point clouds at competitive frame rates and visual quality while consuming significantly less memory, thus unlocking unprecedented performance for the visualization of challenging datasets on commodity GPUs.

Funder

Vienna Science and Technology Fund

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3