1. Luís Ferreira , André Luiz Pilastri , Carlos Martins, Pedro Santos, and Paulo Cortez. 2020 . An Automated and Distributed Machine Learning Framework for Telecommunications Risk Management. In ICAART (2). SCITEPRESS , 99--107. Luís Ferreira, André Luiz Pilastri, Carlos Martins, Pedro Santos, and Paulo Cortez. 2020. An Automated and Distributed Machine Learning Framework for Telecommunications Risk Management. In ICAART (2). SCITEPRESS, 99--107.
2. Luís Ferreira , André Luiz Pilastri , Carlos Manuel Martins, Pedro Miguel Pires, and Paulo Cortez. 2021 . A Comparison of AutoML Tools for Machine Learning, Deep Learning and XGBoost. In IJCNN. IEEE , 1--8. Luís Ferreira, André Luiz Pilastri, Carlos Manuel Martins, Pedro Miguel Pires, and Paulo Cortez. 2021. A Comparison of AutoML Tools for Machine Learning, Deep Learning and XGBoost. In IJCNN. IEEE, 1--8.
3. Gonçalo Fontes , Luís Miguel Matos , Arthur Matta, André Luiz Pilastri, and Paulo Cortez. 2022 . An Empirical Study on Anomaly Detection Algorithms for Extremely Imbalanced Datasets. In AIAI (1) (IFIP Advances in Information and Communication Technology), Vol. 646 . Springer , 85--95. Gonçalo Fontes, Luís Miguel Matos, Arthur Matta, André Luiz Pilastri, and Paulo Cortez. 2022. An Empirical Study on Anomaly Detection Algorithms for Extremely Imbalanced Datasets. In AIAI (1) (IFIP Advances in Information and Communication Technology), Vol. 646. Springer, 85--95.
4. Open Data Based Machine Learning Applications in Smart Cities: A Systematic Literature Review
5. Categorical Attribute traNsformation Environment (CANE): A python module for categorical to numeric data preprocessing;Matos Luís Miguel;Softw. Impacts,2022