Author:
Soares Daniela,Pereira Pedro José,Cortez Paulo,Gonçalves Carlos
Publisher
Springer Nature Switzerland
Reference21 articles.
1. Bagnasco, A., Fresi, F., Saviozzi, M., Silvestro, F., Vinci, A.: Electrical consumption forecasting in hospital facilities: an application case. Energy Build. 103, 261–270 (2015)
2. Bi, J., Bennett, K.P.: Regression error characteristic curves. In: Fawcett, T., Mishra, N. (eds.) Machine Learning, Proceedings of the Twentieth International Conference (ICML 2003), August 21–24, 2003, Washington, DC, USA, pp. 43–50. AAAI Press (2003)
3. Burger, E.M., Moura, S.J.: Gated ensemble learning method for demand-side electricity load forecasting. Energy Build. 109, 23–34 (2015). https://doi.org/10.1016/j.enbuild.2015.10.019
4. Chou, J.S., Tran, D.S.: Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders. Energy 165, 709–726 (2018). https://doi.org/10.1016/j.energy.2018.09.144
5. Cortez, P., Matos, L.M., Pereira, P.J., Santos, N., Duque, D.: Forecasting store foot traffic using facial recognition, time series and support vector machines. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds.) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 - San Sebastián, Spain, October 19th-21st, 2016, Proceedings. Advances in Intelligent Systems and Computing, vol. 527, pp. 267–276 (2016). https://doi.org/10.1007/978-3-319-47364-2_26