1. Gabriel Aguiar , Bartosz Krawczyk , and Alberto Cano . 2022. A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework. arXiv preprint arXiv:2204.03719 ( 2022 ). Gabriel Aguiar, Bartosz Krawczyk, and Alberto Cano. 2022. A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework. arXiv preprint arXiv:2204.03719 (2022).
2. Data stream analysis: Foundations, major tasks and tools;Bahri Maroua;Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,2021
3. An extensive study of C-SMOTE, a Continuous Synthetic Minority Oversampling Technique for Evolving Data Streams;Bernardo Alessio;Expert Systems with Applications,2022
4. Albert Bifet Geoff Holmes and Bernhard Pfahringer. 2010. Leveraging Bagging for Evolving Data Streams. In Machine Learning and Knowledge Discovery in Databases. 135--150. Albert Bifet Geoff Holmes and Bernhard Pfahringer. 2010. Leveraging Bagging for Evolving Data Streams. In Machine Learning and Knowledge Discovery in Databases. 135--150.
5. Albert Bifet , Geoff Holmes , Bernhard Pfahringer , Richard Kirkby , and Ricard Gavaldà . 2009 . New Ensemble Methods for Evolving Data Streams. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 139--148 . Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard Gavaldà. 2009. New Ensemble Methods for Evolving Data Streams. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 139--148.