A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework
Author:
Funder
Virginia Commonwealth University
Amazon Catalyst
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s10994-023-06353-6.pdf
Reference159 articles.
1. Abolfazli, A., & Ntoutsi, E. (2020). Drift-aware multi-memory model for imbalanced data streams. In IEEE international conference on big data (pp. 878–885).
2. Aguiar, G., & Cano, A. (2023). An active learning budget-based oversampling approach for partially labeled multi-class imbalanced data streams. In 38th ACM/SIGAPP symposium on applied computing (pp. 1–8).
3. Al-Khateeb, T., Masud, M. M., Khan, L., Aggarwal, C., Han, J., & Thuraisingham, B. (2012). Stream classification with recurring and novel class detection using class-based ensemble. In IEEE international conference on data mining (pp. 31–40).
4. Al-Shammari, A., Zhou, R., Naseriparsaa, M., & Liu, C. (2019). An effective density-based clustering and dynamic maintenance framework for evolving medical data streams. International Journal of Medical Informatics, 126, 176–186.
5. Alberghini, G., Barbon, S., & Cano, A. (2022). Adaptive ensemble of self-adjusting nearest neighbor subspaces for multi-label drifting data streams. Neurocomputing, 481, 228–248.
Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. EMRIL: Ensemble Method based on ReInforcement Learning for binary classification in imbalanced drifting data streams;Neurocomputing;2024-11
2. Learning evolving prototypes for imbalanced data stream classification with limited labels;Information Sciences;2024-09
3. Distance mapping overlap complexity metric for class-imbalance problems;Applied Soft Computing;2024-09
4. Imbalance-Robust Multi-Label Self-Adjusting kNN;ACM Transactions on Knowledge Discovery from Data;2024-07-26
5. AFS-BM: enhancing model performance through adaptive feature selection with binary masking;Signal, Image and Video Processing;2024-07-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3