At the Locus of Performance: Quantifying the Effects of Copious 3D-Stacked Cache on HPC Workloads

Author:

Domke Jens1ORCID,Vatai Emil1ORCID,Gerofi Balazs2ORCID,Kodama Yuetsu1ORCID,Wahib Mohamed1ORCID,Podobas Artur3ORCID,Mittal Sparsh4ORCID,Pericàs Miquel5ORCID,Zhang Lingqi6ORCID,Chen Peng7ORCID,Drozd Aleksandr1ORCID,Matsuoka Satoshi1ORCID

Affiliation:

1. RIKEN Center for Computational Science, Japan

2. Intel Corporation, USA

3. KTH Royal Institute of Technology, Sweden

4. Indian Institute of Technology, Roorkee, India

5. Chalmers University of Technology, Sweden

6. Tokyo Institute of Technology, Japan

7. National Institute of Advanced Industrial Science and Technology, Japan

Abstract

Over the last three decades, innovations in the memory subsystem were primarily targeted at overcoming the data movement bottleneck. In this paper, we focus on a specific market trend in memory technology: 3D-stacked memory and caches. We investigate the impact of extending the on-chip memory capabilities in future HPC-focused processors, particularly by 3D-stacked SRAM. First, we propose a method oblivious to the memory subsystem to gauge the upper-bound in performance improvements when data movement costs are eliminated. Then, using the gem5 simulator, we model two variants of a hypothetical LARge Cache processor (LARC), fabricated in 1.5 nm and enriched with high-capacity 3D-stacked cache. With a volume of experiments involving a broad set of proxy-applications and benchmarks, we aim to reveal how HPC CPU performance will evolve, and conclude an average boost of 9.56× for cache-sensitive HPC applications, on a per-chip basis. Additionally, we exhaustively document our methodological exploration to motivate HPC centers to drive their own technological agenda through enhanced co-design.

Funder

PRESTO

New Energy and Industrial Technology Development Organization

AIST/TokyoTech Real-world Big-Data Computation Open Innovation Laboratory

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference120 articles.

1. 2023. Heterogeneous Integration Roadmap 2023 Edition - Chapter 20: Thermal . Technical Report. IEEE Electronics Packaging Society. 1–39. https://eps.ieee.org/images/files/HIR_2023/ch20_thermalfinal.pdf

2. Andreas Abel and Jan Reineke. 2021. A Parametric Microarchitecture Model for Accurate Basic Block Throughput Prediction on Recent Intel CPUs. https://arxiv.org/pdf/2107.14210.pdf

3. Advanced Micro Devices Inc. 2021. AMD Instinct™ MI250X Accelerator. https://www.amd.com/en/products/server-accelerators/instinct-mi250x

4. ADVENTURE Project. 2019. Development of Computational Mechanics System for Large Scale Analysis and Design — ADVENTURE Project. https://adventure.sys.t.u-tokyo.ac.jp/

5. A single-V/sub t/ low-leakage gated-ground cache for deep submicron

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Native DRAM Cache: Re-architecting DRAM as a Large-Scale Cache for Data Centers;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

2. Predicting GPU Kernel’s Performance on Upcoming Architectures;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3