Affiliation:
1. Duke University, Durham, NC
Abstract
This article explores the architectural challenges introduced by emerging bottom-up fabrication of nanoelectronic circuits. The specific nanotechnology we explore proposes patterned DNA nanostructures as a scaffold for the placement and interconnection of carbon nanotube or silicon nanorod FETs to create a limited size circuit (node). Three characteristics of this technology that significantly impact architecture are (1) limited node size, (2) random node interconnection, and (3) high defect rates. We present and evaluate an accumulator-based active network architecture that is compatible with any technology that presents these three challenges. This architecture represents an initial, unoptimized solution for understanding the implications of DNA-guide self-assembly.
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Software
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献