Zero-Shot Segmentation of Eye Features Using the Segment Anything Model (SAM)

Author:

Maquiling Virmarie1ORCID,Byrne Sean Anthony2ORCID,Niehorster Diederick C.3ORCID,Nyström Marcus4ORCID,Kasneci Enkelejda1ORCID

Affiliation:

1. Human-Centered Technologies for Learning, Technical University of Munich, Munich, Germany

2. MoMiLab, IMT School for Advanced Studies Lucca, Lucca, LU, Italy

3. Lund University Humanities Lab & Dept. of Psychology, Lund University, Lund, Sweden

4. Lund University Humanities Lab, Lund University, Lund, Sweden

Abstract

The advent of foundation models signals a new era in artificial intelligence. The Segment Anything Model (SAM) is the first foundation model for image segmentation. In this study, we evaluate SAM's ability to segment features from eye images recorded in virtual reality setups. The increasing requirement for annotated eye-image datasets presents a significant opportunity for SAM to redefine the landscape of data annotation in gaze estimation. Our investigation centers on SAM's zero-shot learning abilities and the effectiveness of prompts like bounding boxes or point clicks. Our results are consistent with studies in other domains, demonstrating that SAM's segmentation effectiveness can be on-par with specialized models depending on the feature, with prompts improving its performance, evidenced by an IoU of 93.34% for pupil segmentation in one dataset. Foundation models like SAM could revolutionize gaze estimation by enabling quick and easy image segmentation, reducing reliance on specialized models and extensive manual annotation.

Publisher

Association for Computing Machinery (ACM)

Reference45 articles.

1. Anwai Archit, Sushmita Nair, Nabeel Khalid, Paul Hilt, Vikas Rajashekar, Marei Freitag, Sagnik Gupta, Andreas Dengel, Sheraz Ahmed, and Constantin Pape. 2023. Segment Anything for Microscopy. bioRxiv (2023), 2023--08.

2. Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. 2017. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence 39, 12 (2017), 2481--2495.

3. Rishi Bommasani Drew A. Hudson Ehsan Adeli Russ Altman Simran Arora Sydney von Arx Michael S. Bernstein Jeannette Bohg Antoine Bosselut Emma Brunskill Erik Brynjolfsson Shyamal Buch Dallas Card Rodrigo Castellon Niladri Chatterji Annie Chen Kathleen Creel Jared Quincy Davis Dora Demszky Chris Donahue Moussa Doumbouya Esin Durmus Stefano Ermon John Etchemendy Kawin Ethayarajh Li Fei-Fei Chelsea Finn Trevor Gale Lauren Gillespie Karan Goel Noah Goodman Shelby Grossman Neel Guha Tatsunori Hashimoto Peter Henderson John Hewitt Daniel E. Ho Jenny Hong Kyle Hsu Jing Huang Thomas Icard Saahil Jain Dan Jurafsky Pratyusha Kalluri Siddharth Karamcheti Geoff Keeling Fereshte Khani Omar Khattab Pang Wei Koh Mark Krass Ranjay Krishna Rohith Kuditipudi Ananya Kumar Faisal Ladhak Mina Lee Tony Lee Jure Leskovec Isabelle Levent Xiang Lisa Li Xuechen Li Tengyu Ma Ali Malik Christopher D. Manning Suvir Mirchandani Eric Mitchell Zanele Munyikwa Suraj Nair Avanika Narayan Deepak Narayanan Ben Newman Allen Nie Juan Carlos Niebles Hamed Nilforoshan Julian Nyarko Giray Ogut Laurel Orr Isabel Papadimitriou Joon Sung Park Chris Piech Eva Portelance Christopher Potts Aditi Raghunathan Rob Reich Hongyu Ren Frieda Rong Yusuf Roohani Camilo Ruiz Jack Ryan Christopher Ré Dorsa Sadigh Shiori Sagawa Keshav Santhanam Andy Shih Krishnan Srinivasan Alex Tamkin Rohan Taori Armin W. Thomas Florian Trainèr Rose E. Wang William Wang Bohan Wu Jiajun Wu Yuhuai Wu Sang Michael Xie Michihiro Yasunaga Jiaxuan You Matei Zaharia Michael Zhang Tianyi Zhang Xikun Zhang Yuhui Zhang Lucia Zheng Kaitlyn Zhou and Percy Liang. 2022. On the Opportunities and Risks of Foundation Models. arXiv:2108.07258 [cs.LG]

4. Tom Brown Benjamin Mann Nick Ryder Melanie Subbiah Jared D Kaplan Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry Amanda Askell et al. 2020. Language models are few-shot learners. Advances in neural information processing systems 33 (2020) 1877--1901.

5. Sean Anthony Byrne, Virmarie Maquiling, Marcus Nyström, Enkelejda Kasneci, and Diederick C Niehorster. 2023a. LEyes: A Lightweight Framework for Deep Learning-Based Eye Tracking using Synthetic Eye Images. arXiv preprint arXiv:2309.06129 (2023).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3