Piecewise Linear Branch Prediction

Author:

Jimenez Daniel A.1

Affiliation:

1. Rutgers University

Abstract

Improved branch prediction accuracy is essential to sustaining instruction throughput with todayýs deep pipelines. We introduce piecewise linear branch prediction, an idealized branch predictor that develops a set of linear functions, one for each program path to the branch to be predicted, that separate predicted taken from predicted not taken branches. Taken together, all of these linear functions form a piecewise linear decision surface. We present a limit study of this predictor showing its potential to greatly improve predictor accuracy. We then introduce a practical implementable branch predictor based on piecewise linear branch prediction. In making our predictor practical, we show how a parameterized version of it unifies the previously distinct concepts of perceptron prediction and path-based neural prediction. Our new branch predictor has implementation costs comparable to current prominent predictors in the literature while significantly improving accuracy. For a deeply pipelined simulated microarchitecture our predictor with a 256KB hardware budget improves the harmonic mean normalized instructions-per-cycle rate by 8% over both the original path-based neural predictor and 2Bc-gskew. The average misprediction rate is decreased by 16% over the path-based neural predictor and by 22% over 2Bc-gskew.

Publisher

Association for Computing Machinery (ACM)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SAPIVe: Simple AVX to PIM Vectorizer;2022 XII Brazilian Symposium on Computing Systems Engineering (SBESC);2022-11-21

2. A Survey of Machine Learning for Computer Architecture and Systems;ACM Computing Surveys;2022-02-03

3. A survey of techniques for dynamic branch prediction;Concurrency and Computation: Practice and Experience;2018-09-02

4. On the Variants of Tagged Geometric History Length Branch Predictors;Advances in Intelligent Systems and Applications - Volume 2;2013

5. Fetch Gating Control through Speculative Instruction Window Weighting;Transactions on High-Performance Embedded Architectures and Compilers II;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3