A Hardware-Assisted Energy-Efficient Processing Model for Activity Recognition Using Wearables

Author:

Ghasemzadeh Hassan1,Fallahzadeh Ramin1,Jafari Roozbeh2

Affiliation:

1. Washington State University, Pullman, WA

2. Texas A&M University, College Station, TX

Abstract

Wearables are being widely utilized in health and wellness applications, primarily due to the recent advances in sensor and wireless communication, which enhance the promise of wearable systems in providing continuous and real-time monitoring and interventions. Wearables are generally composed of hardware/software components for collection, processing, and communication of physiological data. Practical implementation of wearable monitoring in real-life applications is currently limited due to notable obstacles. The wearability and form factor are dominated by the amount of energy needed for sensing, processing, and communication. In this article, we propose an ultra-low-power granular decision-making architecture, also called screening classifier, which can be viewed as a tiered wake-up circuitry, consuming three orders of magnitude-less power than the state-of-the-art low-power microcontrollers. This processing model operates based on computationally simple template matching modules, based on coarse- to fine-grained analysis of the signals with on-demand and gradually increasing the processing power consumption. Initial template matching rejects signals that are clearly not of interest from the signal processing chain, keeping the rest of processing blocks idle. If the signal is likely of interest, the sensitivity and the power of the template matching modules are gradually increased, and ultimately, the main processing unit is activated. We pose optimization techniques to efficiently split a full template into smaller bins, called mini-templates, and activate only a subset of bins during each classification decision. Our experimental results on real data show that this signal screening model reduces power consumption of the processing architecture by a factor of 70% while the sensitivity of detection remains at least 80%.

Funder

MARCO and DARPA

TerraSwarm, one of six centers of STARnet, a Semiconductor Research Corporation program

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3