Human-in-the-loop Learning for Personalized Diet Monitoring from Unstructured Mobile Data

Author:

Hezarjaribi Niloofar1,Mazrouee Sepideh2,Hemati Saied3,Chaytor Naomi S.1,Perrigue Martine1,Ghasemzadeh Hassan1

Affiliation:

1. Washington State University, WA, USA

2. University of California San Diego, USA

3. University of Idaho, ID, USA

Abstract

Lifestyle interventions with the focus on diet are crucial in self-management and prevention of many chronic conditions, such as obesity, cardiovascular disease, diabetes, and cancer. Such interventions require a diet monitoring approach to estimate overall dietary composition and energy intake. Although wearable sensors have been used to estimate eating context (e.g., food type and eating time), accurate monitoring of dietary intake has remained a challenging problem. In particular, because monitoring dietary intake is a self-administered task that involves the end-user to record or report their nutrition intake, current diet monitoring technologies are prone to measurement errors related to challenges of human memory, estimation, and bias. New approaches based on mobile devices have been proposed to facilitate the process of dietary intake recording. These technologies require individuals to use mobile devices such as smartphones to record nutrition intake by either entering text or taking images of the food. Such approaches, however, suffer from errors due to low adherence to technology adoption and time sensitivity to the dietary intake context. In this article, we introduce EZNutriPal , 1 an interactive diet monitoring system that operates on unstructured mobile data such as speech and free-text to facilitate dietary recording, real-time prompting, and personalized nutrition monitoring. EZNutriPal features a natural language processing unit that learns incrementally to add user-specific nutrition data and rules to the system. To prevent missing data that are required for dietary monitoring (e.g., calorie intake estimation), EZNutriPal devises an interactive operating mode that prompts the end-user to complete missing data in real-time. Additionally, we propose a combinatorial optimization approach to identify the most appropriate pairs of food names and food quantities in complex input sentences. We evaluate the performance of EZNutriPal using real data collected from 23 human subjects who participated in two user studies conducted in 13 days each. The results demonstrate that EZNutriPal achieves an accuracy of 89.7% in calorie intake estimation. We also assess the impacts of the incremental training and interactive prompting technologies on the accuracy of nutrient intake estimation and show that incremental training and interactive prompting improve the performance of diet monitoring by 49.6% and 29.1%, respectively, compared to a system without such computing units.

Funder

United States National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3