Continuous Human Action Recognition for Human-machine Interaction: A Review

Author:

Gammulle Harshala1ORCID,Ahmedt-Aristizabal David2ORCID,Denman Simon1ORCID,Tychsen-Smith Lachlan2ORCID,Petersson Lars2ORCID,Fookes Clinton1ORCID

Affiliation:

1. Queensland University of Technology, Australia

2. CSIRO Data61, Australia

Abstract

With advances in data-driven machine learning research, a wide variety of prediction models have been proposed to capture spatio-temporal features for the analysis of video streams. Recognising actions and detecting action transitions within an input video are challenging but necessary tasks for applications that require real-time human-machine interaction. By reviewing a large body of recent related work in the literature, we thoroughly analyse, explain, and compare action segmentation methods and provide details on the feature extraction and learning strategies that are used on most state-of-the-art methods. We cover the impact of the performance of object detection and tracking techniques on human action segmentation methodologies. We investigate the application of such models to real-world scenarios and discuss several limitations and key research directions towards improving interpretability, generalisation, optimisation, and deployment.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference145 articles.

1. David Ahmedt-Aristizabal Mohammad Ali Armin Simon Denman Clinton Fookes and Lars Petersson. 2022. A survey on graph-based deep learning for computational histopathology. Computerized Medical Imaging and Graphics 95 (2022) 102027.

2. Refining Action Segmentation with Hierarchical Video Representations

3. AlexeyAB. 2021. Darknet: Open Source Neural Networks in C. Retrieved from https://github.com/AlexeyAB/darknet.

4. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling;Bai Shaojie;arXiv preprint arXiv:1803.01271,2018

5. Tracking Without Bells and Whistles

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal infrared action recognition with two-stream shift Graph Convolutional Network;Machine Vision and Applications;2024-05-13

2. Deep learning approaches for seizure video analysis: A review;Epilepsy & Behavior;2024-05

3. Spatio-Temporal Correlation Learning for Multiple Object Tracking;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

4. Action recognition in compressed domains: A survey;Neurocomputing;2024-04

5. Enhancing early action prediction in videos through temporal composition of sub-actions;Multimedia Tools and Applications;2024-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3