Content Bias in Online Health Search

Author:

White Ryen W.1,Hassan Ahmed1

Affiliation:

1. Microsoft Research

Abstract

Search engines help people answer consequential questions. Biases in retrieved and indexed content (e.g., skew toward erroneous outcomes that represent deviations from reality), coupled with searchers' biases in how they examine and interpret search results, can lead people to incorrect answers. In this article, we seek to better understand biases in search and retrieval, and in particular those affecting the accuracy of content in search results, including the search engine index, features used for ranking, and the formulation of search queries. Focusing on the important domain of online health search, this research broadens previous work on biases in search to examine the role of search systems in contributing to biases. To assess bias, we focus on questions about medical interventions and employ reliable ground truth data from authoritative medical sources. In the course of our study, we utilize large-scale log analysis using data from a popular Web search engine, deep probes of result lists on that search engine, and crowdsourced human judgments of search result captions and landing pages. Our findings reveal bias in results, amplifying searchers' existing biases that appear evident in their search activity. We also highlight significant bias in indexed content and show that specific ranking signals and specific query terms support bias. Both of these can degrade result accuracy and increase skewness in search results. Our analysis has implications for bias mitigation strategies in online search systems, and we offer recommendations for search providers based on our findings.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3