Affiliation:
1. Saarland University, Saarbruecken, Germany
Abstract
Based on the theory of stochastic chemical kinetics, the inherent randomness of biochemical reaction networks can be described by discrete-state continuous-time Markov chains. However, the analysis of such processes is computationally expensive and sophisticated numerical methods are required. Here, we propose an analysis framework in which we integrate a number of moments of the process instead of the state probabilities. This results in a very efficient simulation of the time evolution of the process. To regain the state probabilities from the moment representation, we combine the fast moment-based simulation with a maximum entropy approach for the reconstruction of the underlying probability distribution. We investigate the usefulness of this combined approach in the setting of stochastic chemical kinetics and present numerical results for three reaction networks showing its efficiency and accuracy. Besides a simple dimerization system, we study a bistable switch system and a multiattractor network with complex dynamics.
Funder
German Research Council (DFG) as part of the Cluster of Excellence on Multimodal Computing and Interaction at Saarland University
Transregional Collaborative Research Center's Automatic Verification and Analysis of Complex Systems
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,Modelling and Simulation
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献