A provably convergent control closure scheme for the Method of Moments of the Chemical Master Equation

Author:

Wagner VincentORCID,Strässer RobinORCID,Allgöwer FrankORCID,Radde NicoleORCID

Abstract

In this article, we introduce a novel moment closure scheme based on concepts from Model Predictive Control (MPC) to accurately describe the time evolution of the statistical moments of the solution of the Chemical Master Equation (CME). The Method of Moments, a set of ordinary differential equations frequently used to calculate the firstnmmoments, is generally not closed since lower-order moments depend on higher-order moments. To overcome this limitation, we interpret the moment equations as a nonlinear dynamical system, where the firstnmmoments serve as states and the closing moments serve as control input. We demonstrate the efficacy of our approach using three example systems and show that it outperforms existing closure schemes. For polynomial systems, which encompass all mass-action systems, we provide probability bounds for the error between true and estimated moment trajectories. We achieve this by combining convergence properties of a priori moment estimates from stochastic simulations with guarantees for nonlinear reference tracking MPC. Our proposed method offers an effective solution to accurately predict the time evolution of moments of the CME, which has wide-ranging implications for many fields, including biology, chemistry, and engineering.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3