Performance of database workloads on shared-memory systems with out-of-order processors

Author:

Ranganathan Parthasarathy1,Gharachorloo Kourosh2,Adve Sarita V.1,Barroso Luiz André2

Affiliation:

1. Electrical and Computer Engineering, Rice University

2. Western Research Laboratory, Compaq Computer Corporation

Abstract

Database applications such as online transaction processing (OLTP) and decision support systems (DSS) constitute the largest and fastest-growing segment of the market for multiprocessor servers. However, most current system designs have been optimized to perform well on scientific and engineering workloads. Given the radically different behavior of database workloads (especially OLTP), it is important to re-evaluate key system design decisions in the context of this important class of applications.This paper examines the behavior of database workloads on shared-memory multiprocessors with aggressive out-of-order processors, and considers simple optimizations that can provide further performance improvements. Our study is based on detailed simulations of the Oracle commercial database engine. The results show that the combination of out-of-order execution and multiple instruction issue is indeed effective in improving performance of database workloads, providing gains of 1.5 and 2.6 times over an in-order single-issue processor for OLTP and DSS, respectively. In addition, speculative techniques enable optimized implementations of memory consistency models that significantly improve the performance of stricter consistency models, bringing the performance to within 10--15% of the performance of more relaxed models.The second part of our study focuses on the more challenging OLTP workload. We show that an instruction stream buffer is effective in reducing the remaining instruction stalls in OLTP, providing a 17% reduction in execution time (approaching a perfect instruction cache to within 15%). Furthermore, our characterization shows that a large fraction of the data communication misses in OLTP exhibit migratory behavior; our preliminary results show that software prefetch and writeback/flush hints can be used for this data to further reduce execution time by 12%.

Publisher

Association for Computing Machinery (ACM)

Reference30 articles.

1. Adaptive cache coherency for detecting migratory shared data

2. AlphaServer 4100 performance characterization;Cvetanovic Z.;Digital Technical Journal,1996

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Micro-architectural analysis of in-memory OLTP: Revisited;The VLDB Journal;2021-03-31

2. Shooting Down the Server Front-End Bottleneck;ACM Transactions on Computer Systems;2020-11-30

3. Databases on Modern Hardware: How to Stop Underutilization and Love Multicores;Synthesis Lectures on Data Management;2017-08-14

4. A methodology for OLTP micro-architectural analysis;Proceedings of the 13th International Workshop on Data Management on New Hardware;2017-05-14

5. Cache-Conscious Data Access for DBMS in Multicore Environments;IEICE Transactions on Information and Systems;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3