Affiliation:
1. California Institute of Technology, Pasadena, CA, USA
Abstract
Demand response is crucial for the incorporation of renewable energy into the grid. In this paper, we focus on a particularly promising industry for demand response: data centers. We use simulations to show that, not only are data centers large loads, but they can provide as much (or possibly more) flexibility as large-scale storage if given the proper incentives. However, due to the market power most data centers maintain, it is difficult to design programs that are efficient for data center demand response. To that end, we propose that prediction-based pricing is an appealing market design, and show that it outperforms more traditional supply function bidding mechanisms in situations where market power is an issue. However, prediction-based pricing may be inefficient when predictions are inaccurate, and so we provide analytic, worst-case bounds on the impact of prediction error on the efficiency of prediction-based pricing. These bounds hold even when network constraints are considered, and highlight that prediction-based pricing is surprisingly robust to prediction error.
Funder
Microsoft Research
California Institute of Technology
Division of Computing and Communication Foundations
Army Research Office
Bell Labs, Alcaltel-Lucent
Division of Computer and Network Systems
U.S. Department of Energy
Australian Research Council
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献