Affiliation:
1. University of California, San Diego, La Jolla, CA
Abstract
As brown energy costs grow, renewable energy becomes more widely used. Previous work focused on using immediately available green energy to supplement the non-renewable, or brown energy at the cost of canceling and rescheduling jobs whenever the green energy availability is too low [16]. In this paper we design an adaptive data center job scheduler which utilizes short term prediction of solar and wind energy production. This enables us to scale the number of jobs to the expected energy availability, thus reducing the number of cancelled jobs by 4x and improving green energy usage efficiency by 3x over just utilizing the immediately available green energy.
Publisher
Association for Computing Machinery (ACM)
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献