ACDC

Author:

Segarra Juan1,Rodríguez Clemente2,Gran Rubén1,Aparicio Luis C.1,Viñals Víctor1

Affiliation:

1. Universidad de Zaragoza, Zaragoza, (SPAIN)

2. Universidad del País Vasco, Donostia-San Sebastián, (SPAIN)

Abstract

In multitasking real-time systems, the worst-case execution time (WCET) of each task and also the effects of interferences between tasks in the worst-case scenario need to be calculated. This is especially complex in the presence of data caches. In this article, we propose a small instruction-driven data cache (256 bytes) that effectively exploits locality. It works by preselecting a subset of memory instructions that will have data cache replacement permission. Selection of such instructions is based on data reuse theory. Since each selected memory instruction replaces its own data cache line, it prevents pollution and performance in tasks becomes independent of the size of the associated data structures. We have modeled several memory configurations using the Lock-MS WCET analysis method. Our results show that, on average, our data cache effectively services 88% of program data of the tested benchmarks. Such results double the worst-case performance of our tested multitasking experiments. In addition, in the worst case, they reach between 75% and 89% of the ideal case of always hitting in instruction and data caches. As well, we show that using partitioning on our proposed hardware only provides marginal benefits in worst-case performance, so using partitioning is discouraged. Finally, we study the viability of our proposal in the MiBench application suite by characterizing its data reuse, achieving hit ratios beyond 90% in most programs.

Funder

Consolider CSD2007-00050 (Spanish government), and HiPEAC-2 NoE (European FP7/ICT 217068)

Spanish government and European ERDF

gaZ: T48 Research Group (Aragón government and European ESF)

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3