Strip trees: a hierarchical representation for curves

Author:

Ballard Dana H.1

Affiliation:

1. Univ. of Rochester, Rochester, NY

Abstract

The use of curves to represent two-dimensional structures is an important part of many scientific investigations. For example, geographers use curves extensively to represent map features such as contour lines, roads, and rivers. Circuit layout designers use curves to specify the wiring between circuits. Because of the very large amount of data involved and the need to perform operations on this data efficiently, the representation of such curves is a crucial issue. A hierarchical representation consisting of binary trees with a special datum at each node is described. This datum is called a strip and the tree that contains such data is called a strip tree. Lower levels in the tree correspond to finer resolution representations of the curve. The strip tree structure is a direct consequence of using a special method for digitizing lines and retaining all intermediate steps. This gives several desirable properties. For curves that are well-behaved, intersection and point-membership (for closed curves) calculations can be solved in 0(log n ) where n is the number of points describing the curve. The curves can be efficiently encoded and displayed at various resolutions. The representation is closed under intersection and union and these operations can be carried out at different resolutions. All these properties depend on the hierarchical tree structure which allows primitive operations to be performed at the lowest possible resolution with great computational time savings. Strip trees is a linear interpolation scheme which realizes an important space savings by not representing all the points explicitly. This means that even when the overhead of the tree indexing is added, the storage requirement is comparable to raster representations which do represent most of the points explicitly.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU;Computer Graphics Forum;2021-10

2. What Segments Are the Best in Representing Contours?;How Uncertainty-Related Ideas Can Provide Theoretical Explanation For Empirical Dependencies;2021

3. A morphing approach for continuous generalization of linear map features;PLOS ONE;2020-12-08

4. FURTHER EXAMPLES OF PARAMETRIC ITERATIVE FUNCTION SYSTEMS FOR THE CONTINUUM GROWTH OF THE ATTRACTOR;Fractals;2020-06

5. Image-based extrusion with realistic surface wrinkles;Journal of Computational Design and Engineering;2020-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3