Python to accelerate embedded SoC design

Author:

Logaras Evangelos1,Hazapis Orsalia G.1,Manolakos Elias S.1

Affiliation:

1. University of Athens, Athens, Greece

Abstract

We present SysPy (System Python) a tool which exploits the strengths of the popular Python scripting language to boost design productivity of embedded System on Chips for FPGAs. SysPy acts as a “glue” software between mature HDLs, ready-to-use VHDL components and programmable processor soft IP cores. SysPy can be used to: (i) automatically translate hardware components described in Python into synthesizable VHDL, (ii) capture top-level structural descriptions of processor-centric SoCs in Python, (iii) implement all the steps necessary to compile the user's C code for an instruction set processor core and generate processor specific Tcl scripts that import to the design project all the necessary HDL files of the processor's description and instantiate/connect the core to other blocks in a synthesizable top-level Python description. Moreover, we have developed a Hardware Abstraction Layer (HAL) in Python which allows user applications running in a host PC to utilize effortlessly the SoC's resources in the FPGA. SysPy's design capabilities, when complemented with the developed HAL software API, provide all the necessary tools for hw/sw partitioning and iterative design for efficient SoC's performance tuning. We demonstrate how SysPy's design flow and functionalities can be used by building a processor-centric embedded SoC for computational systems biology. The designed SoC, implemented using a Xilinx Virtex-5 FPGA, combines the flexibility of a programmable soft processor core (Leon3) with the high performance of an application specific core to simulate flexibly and efficiently the stochastic behavior of large size biomolecular reaction networks. Such networks are essential for studying the dynamics of complex biological systems consisting of multiple interacting pathways.

Funder

State Scholarships Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference41 articles.

1. Aeroflex Gaisler GRMON. 2012. Debug monitor for Leon. http://www.gaisler.com. Aeroflex Gaisler GRMON. 2012. Debug monitor for Leon. http://www.gaisler.com.

2. Aeroflex Gaisler Leon3. 2012. LEON3 Multiprocessing CPU Core. http://www.gaisler.com. Aeroflex Gaisler Leon3. 2012. LEON3 Multiprocessing CPU Core. http://www.gaisler.com.

3. LibSBML: an API Library for SBML

4. Biopython

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ZyPy: Intercepting NumPy operations for acceleration on FPGAs;Proceedings of the 13th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies;2023-06-14

2. Enabling transparent hardware acceleration on Zynq SoC for scientific computing;ACM SIGBED Review;2020-07-27

3. Hot & Spicy: Improving Productivity with Python and HLS for FPGAs;2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM);2018-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3