Optimally packed chains of bulges in multishift QR algorithms

Author:

Karlsson Lars1,Kressner Daniel2,Lang Bruno3

Affiliation:

1. Umeå University, Sweden

2. EPF Lausanne, Switzerland

3. University of Wuppertal, Germany

Abstract

The QR algorithm is the method of choice for computing all eigenvalues of a dense nonsymmetric matrix A . After an initial reduction to Hessenberg form, a QR iteration can be viewed as chasing a small bulge from the top left to the bottom right corner along the subdiagonal of A . To increase data locality and create potential for parallelism, modern variants of the QR algorithm perform several iterations simultaneously, which amounts to chasing a chain of several bulges instead of a single bulge. To make effective use of level 3 BLAS, it is important to pack these bulges as tightly as possible within the chain. In this work, we show that the tightness of the packing in existing approaches is not optimal and can be increased. This directly translates into a reduced chain length by 33% compared to the state-of-the-art LAPACK implementation of the QR algorithm. To demonstrate the impact of our idea, we have modified the LAPACK implementation to make use of the optimal packing. Numerical experiments reveal a uniform reduction of the execution time, without affecting stability or robustness.

Funder

eSSENCE

UMIT Research Lab via Balticgruppen

Vetenskapsrädet

strategic collaborative eScience programme

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference18 articles.

1. E. Anderson Z. Bai etal 1999. LAPACK Users' Guide. 3rd Ed. SIAM Philadelphia PA. E. Anderson Z. Bai et al. 1999. LAPACK Users' Guide. 3rd Ed. SIAM Philadelphia PA.

2. Z. Bai D. Day J. W. Demmel and J. J. Dongarra. 1997. A test matrix collection for non-Hermitian eigenvalue problems (release 1.0). Tech.l Rep. CS-97-355 Department of Computer Science University of Tennessee Knoxville TN http://math.nist.gov/MatrixMarket. Z. Bai D. Day J. W. Demmel and J. J. Dongarra. 1997. A test matrix collection for non-Hermitian eigenvalue problems (release 1.0). Tech.l Rep. CS-97-355 Department of Computer Science University of Tennessee Knoxville TN http://math.nist.gov/MatrixMarket.

3. ON A BLOCK IMPLEMENTATION OF HESSENBERG MULTISHIFT QR ITERATION

4. The Multishift QR Algorithm. Part I: Maintaining Well-Focused Shifts and Level 3 Performance

5. The Multishift QR Algorithm. Part II: Aggressive Early Deflation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Algorithm 1019: A Task-based Multi-shift QR/QZ Algorithm with Aggressive Early Deflation;ACM Transactions on Mathematical Software;2022-03-31

2. Rank-Structured QR for Chebyshev Rootfinding;SIAM Journal on Matrix Analysis and Applications;2021-01

3. A Multishift, Multipole Rational QZ Method with Aggressive Early Deflation;SIAM Journal on Matrix Analysis and Applications;2021-01

4. An extended Hamiltonian QR algorithm;Calcolo;2017-03-08

5. Fine-grained bulge-chasing kernels for strongly scalable parallel QR algorithms;Parallel Computing;2014-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3