Affiliation:
1. Department of Computing Science and HPC2N, Umeå University, Sweden
Abstract
The QR algorithm is one of the three phases in the process of computing the eigenvalues and the eigenvectors of a dense nonsymmetric matrix. This paper describes a task-based QR algorithm for reducing an upper Hessenberg matrix to real Schur form. The task-based algorithm also supports generalized eigenvalue problems (QZ algorithm) but this paper concentrates on the standard case. The task-based algorithm adopts previous algorithmic improvements, such as tightly-coupled multi-shifts and
Aggressive Early Deflation (AED)
, and also incorporates several new ideas that significantly improve the performance. This includes, but is not limited to, the elimination of several synchronization points, the dynamic merging of previously separate computational steps, the shortening and the prioritization of the critical path, and experimental GPU support. The task-based implementation is demonstrated to be multiple times faster than multi-threaded LAPACK and ScaLAPACK in both single-node and multi-node configurations on two different machines based on Intel and AMD CPUs. The implementation is built on top of the StarPU runtime system and is part of the open-source StarNEig library.
Funder
European Union’s Horizon 2020 research and innovation programme
Swedish strategic research programme eSSENCE and Swedish Research Council
Publisher
Association for Computing Machinery (ACM)
Subject
Applied Mathematics,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献