1. Wide & Deep Learning for Recommender Systems
2. Yarin Gal and Zoubin Ghahramani . 2016 . Dropout as a bayesian approximation: Representing model uncertainty in deep learning . In international conference on machine learning. PMLR, 1050–1059 . Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning. PMLR, 1050–1059.
3. Jakob Gawlikowski , Cedrique Rovile Njieutcheu Tassi , Mohsin Ali, Jongseok Lee, Matthias Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel , Peter Jung, Ribana Roscher , 2021 . A survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342(2021). Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, 2021. A survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342(2021).
4. Huifeng Guo Ruiming Tang Yunming Ye Zhenguo Li and Xiuqiang He. 2017. DeepFM: a factorization-machine based neural network for CTR prediction. arXiv preprint arXiv:1703.04247(2017). Huifeng Guo Ruiming Tang Yunming Ye Zhenguo Li and Xiuqiang He. 2017. DeepFM: a factorization-machine based neural network for CTR prediction. arXiv preprint arXiv:1703.04247(2017).
5. Scaling TensorFlow to 300 million predictions per second