1. Performance Left on the Table: An Evaluation of Compiler Autovectorization for RISC-V
2. Spatz
3. Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}: An automated {End-to-End} optimizing compiler for deep learning. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). 578--594.
4. Tensorflow lite micro: Embedded machine learning for tinyml systems;David Robert;Proceedings of Machine Learning and Systems,2021
5. Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and Luca Benini. 2019. PULP-NN: Accelerating Quantized Neural Networks on Parallel Ultra-Low-Power RISC-V Processors. CoRR abs/1908.11263 (2019). arXiv:1908.11263 http://arxiv.org/abs/1908.11263