A multisided generalization of Bézier surfaces

Author:

Loop Charles T.1,DeRose Tony D.1

Affiliation:

1. Univ. of Washington, Seattle

Abstract

In this paper we introduce a class of surface patch representations, called S-patches, that unify and generalize triangular and tensor product Bézier surfaces by allowing patches to be defined over any convex polygonal domain; hence, S-patches may have any number of boundary curves. Other properties of S-patches are geometrically meaningful control points, separate control over positions and derivatives along boundary curves, and a geometric construction algorithm based on de Casteljau's algorithm. Of special interest are the regular S-patches, that is, S-patches defined on regular domain polygons. Also presented is an algorithm for smoothly joining together these surfaces with C k continuity.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometric Modeling of Umbrella Surfaces;Computer-Aided Design;2024-10

2. Interior control structure for Generalized Bézier patches over curved domains;Computers & Graphics;2024-06

3. Genuine multi-sided parametric surface patches – A survey;Computer Aided Geometric Design;2024-05

4. A Survey on Cage‐based Deformation of 3D Models;Computer Graphics Forum;2024-04-30

5. Classification of Toric Surface Patches;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3