A Survey on Cage‐based Deformation of 3D Models

Author:

Ströter D.1ORCID,Thiery J. M.2ORCID,Hormann K.3ORCID,Chen J.4ORCID,Chang Q.3ORCID,Besler S.15ORCID,Mueller‐Roemer J. S.15ORCID,Boubekeur T.2ORCID,Stork A.15ORCID,Fellner D. W.156ORCID

Affiliation:

1. Technical University of Darmstadt Germany

2. Adobe Research France

3. Università della Svizzera italiana Lugano Switzerland

4. Inria France

5. Fraunhofer IGD Germany

6. Graz University of Technology, Institute of Computer Graphics and Knowledge Visualization Austria

Abstract

AbstractInteractive deformation via control handles is essential in computer graphics for the modeling of 3D geometry. Deformation control structures include lattices for free‐form deformation and skeletons for character articulation, but this report focuses on cage‐based deformation. Cages for deformation control are coarse polygonal meshes that encase the to‐be‐deformed geometry, enabling high‐resolution deformation. Cage‐based deformation enables users to quickly manipulate 3D geometry by deforming the cage. Due to their utility, cage‐based deformation techniques increasingly appear in many geometry modeling applications. For this reason, the computer graphics community has invested a great deal of effort in the past decade and beyond into improving automatic cage generation and cage‐based deformation. Recent advances have significantly extended the practical capabilities of cage‐based deformation methods. As a result, there is a large body of research on cage‐based deformation. In this report, we provide a comprehensive overview of the current state of the art in cage‐based deformation of 3D geometry. We discuss current methods in terms of deformation quality, practicality, and precomputation demands. In addition, we highlight potential future research directions that overcome current issues and extend the set of practical applications. In conjunction with this survey, we publish an application to unify the most relevant deformation methods. Our report is intended for computer graphics researchers, developers of interactive geometry modeling applications, and 3D modeling and character animation artists.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3