Correlated load-address predictors

Author:

Bekerman Michael1,Jourdan Stephan1,Ronen Ronny1,Kirshenboim Gilad1,Rappoport Lihu1,Yoaz Adi1,Weiser Uri1

Affiliation:

1. Intel Corporation, Intel Israel (74) Ltd., Haifa 31015, Israel

Abstract

As microprocessors become faster, the relative performance cost of memory accesses increases. Bigger and faster caches significantly reduce the absolute load-to-use time delay. However, increase in processor operational frequencies impairs the relative load-to-use latency, measured in processor cycles (e.g. from two cycles on the Pentium® processor to three cycles or more in current designs). Load-address prediction techniques were introduced to partially cut the load-to-use latency. This paper focuses on advanced address-prediction schemes to further shorten program execution time.Existing address prediction schemes are capable of predicting simple address patterns, consisting mainly of constant addresses or stride-based addresses. This paper explores the characteristics of the remaining loads and suggests new enhanced techniques to improve prediction effectiveness:• Context-based prediction to tackle part of the remaining, difficult-to-predict, load instructions.• New prediction algorithms to take advantage of global correlation among different static loads.• New confidence mechanisms to increase the correct prediction rate and to eliminate costly mispredictions.• Mechanisms to prevent long or random address sequences from polluting the predictor data structures while providing some hysteresis behavior to the predictions.Such an enhanced address predictor accurately predicts 67% of all loads, while keeping the misprediction rate close to 1%. We further prove that the proposed predictor works reasonably well in a deep pipelined architecture where the predict-to-update delay may significantly impair both prediction rate and accuracy.

Publisher

Association for Computing Machinery (ACM)

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constable: Improving Performance and Power Efficiency by Safely Eliminating Load Instruction Execution;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

2. Doppelganger Loads: A Safe, Complexity-Effective Optimization for Secure Speculation Schemes;Proceedings of the 50th Annual International Symposium on Computer Architecture;2023-06-17

3. Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction;2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO);2022-10

4. Register file prefetching;Proceedings of the 49th Annual International Symposium on Computer Architecture;2022-06-11

5. MetaSys: A Practical Open-source Metadata Management System to Implement and Evaluate Cross-layer Optimizations;ACM Transactions on Architecture and Code Optimization;2022-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3