Adaptive insertion policies for high performance caching

Author:

Qureshi Moinuddin K.1,Jaleel Aamer2,Patt Yale N.1,Steely Simon C.2,Emer Joel2

Affiliation:

1. The University of Texas at Austin, Austin, TX

2. Intel, Hudson, MA

Abstract

The commonly used LRU replacement policy is susceptible to thrashing for memory-intensive workloads that have a working set greater than the available cache size. For such applications, the majority of lines traverse from the MRU position to the LRU position without receiving any cache hits, resulting in inefficient use of cache space. Cache performance can be improved if some fraction of the working set is retained in the cache so that at least that fraction of the working set can contribute to cache hits. We show that simple changes to the insertion policy can significantly reduce cache misses for memory-intensive workloads. We propose the LRU Insertion Policy (LIP) which places the incoming line in the LRU position instead of the MRU position. LIP protects the cache from thrashing and results in close to optimal hitrate for applications that have a cyclic reference pattern. We also propose the Bimodal Insertion Policy (BIP) as an enhancement of LIP that adapts to changes in the working set while maintaining the thrashing protection of LIP. We finally propose a Dynamic Insertion Policy (DIP) to choose between BIP and the traditional LRU policy depending on which policy incurs fewer misses. The proposed insertion policies do not require any change to the existing cache structure, are trivial to implement, and have a storage requirement of less than two bytes. We show that DIP reduces the average MPKI of the baseline 1MB 16-way L2 cache by 21%, bridging two-thirds of the gap between LRU and OPT.

Publisher

Association for Computing Machinery (ACM)

Cited by 265 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OptimusPrime: Unleash Dataplane Programmability through a Transformable Architecture;Proceedings of the ACM SIGCOMM 2024 Conference;2024-08-04

2. Flow Correlator: A Flow Table Cache Management Strategy;2024 33rd International Conference on Computer Communications and Networks (ICCCN);2024-07-29

3. Constable: Improving Performance and Power Efficiency by Safely Eliminating Load Instruction Execution;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

4. ReBEC: A replacement-based energy-efficient fault-tolerance design for associative caches;Future Generation Computer Systems;2024-06

5. NUCAlloc: Fine-Grained Block Placement in Hashed Last-Level NUCA Caches;Proceedings of the 38th ACM International Conference on Supercomputing;2024-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3