Flattened butterfly

Author:

Kim John1,Dally William J.1,Abts Dennis2

Affiliation:

1. Stanford University, Stanford, CA

2. Cray Inc., Chippewa Falls, WI

Abstract

Increasing integrated-circuit pin bandwidth has motivateda corresponding increase in the degree or radix of interconnection networksand their routers. This paper introduces the flattened butterfly, a cost-efficient topology for high-radix networks. On benign (load-balanced) traffic, the flattened butterfly approaches the cost/performance of a butterfly network and has roughly half the cost of a comparable performance Clos network.The advantage over the Clos is achieved by eliminating redundant hopswhen they are not needed for load balance. On adversarial traffic, the flattened butterfly matches the cost/performance of a folded-Clos network and provides an order of magnitude better performance than a conventional butterfly.In this case, global adaptive routing is used to switchthe flattened butterfly from minimal to non-minimal routing - usingredundant hops only when they are needed. Minimal and non-minimal, oblivious and adaptive routing algorithms are evaluated on the flattened butterfly.We show that load-balancing adversarial traffic requires non-minimalglobally-adaptive routing and show that sequential allocators are required to avoid transient load imbalance when using adaptive routing algorithms.We also compare the cost of the flattened butterfly to folded-Clos, hypercube,and butterfly networks with identical capacityand show that the flattened butterfly is more cost-efficient thanfolded-Clos and hypercube topologies.

Publisher

Association for Computing Machinery (ACM)

Cited by 186 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparse Hamming Graph: A Customizable Network-on-Chip Topology;2023 60th ACM/IEEE Design Automation Conference (DAC);2023-07-09

2. Efficient implementation of multi-level Dragonfly networks with Hamming graph for future optical networks;Journal of Optics;2023-05-30

3. All-to-All Broadcast Algorithm in Galaxyfly Networks;Mathematics;2023-05-26

4. MQL: ML-Assisted Queuing Latency Analysis for Data Center Networks;2023 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS);2023-04

5. Learned Load Balancing;Proceedings of the 24th International Conference on Distributed Computing and Networking;2023-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3