Affiliation:
1. School of Computer Science and Technology, Shandong University, China
2. Department of Electrical and Computer Engineering, University of Pittsburgh, USA
3. Department of Computer Science, City University of Hong Kong, Hong Kong, China
Abstract
Static random access memory– (SRAM) based field programmable gate arrays (FPGAs) are currently facing challenges of limited capacity and high leakage power. To solve this problem, non-volatile memory (NVM) is proposed as the alternative to build non-volatile FPGAs (NVFPGAs). Even though the feasibility of NVFPGA has been confirmed, the utilization of multiple level cells (MLCs) has not been fully exploited yet.
In this article, we study architecture of MLC-based NVFPGAs, and propose five cluster structures. To give detailed comparisons and extensive discussions, we conduct experiments for area, performance and leakage power evaluation. Based on explorations of the characteristics of MLC-based NVFPGAs, we further present MLC-aware timing-driven packing method to improve delay. In critical paths, our proposed method reduces the overhead of the additional delay in slow MLC cells. Experiments show that, compared to SRAM-based FPGAs, the proposed architecture with the proposed CAD flow can reduce the area, critical path delay and leakage power by 31%, 10%, and 95%, respectively.
Funder
Research and Application of Key Technology for Intelligent Dispatching and Security Early-warning of Large Power Grid
State Grid Corporation of China
National Key R8D Program of China
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献