SG-Float: Achieving Memory Access and Computing Power Reduction Using Self-Gating Float in CNNs

Author:

Wu Jun-Shen1ORCID,Hsu Tsen-Wei1ORCID,Liu Ren-Shuo1ORCID

Affiliation:

1. Department of Electrical Engineering, National Tsing Hua University, Taiwan

Abstract

Convolutional neural networks (CNNs) are essential for advancing the field of artificial intelligence. However, since these networks are highly demanding in terms of memory and computation, implementing CNNs can be challenging. To make CNNs more accessible to energy-constrained devices, researchers are exploring new algorithmic techniques and hardware designs that can reduce memory and computation requirements. In this work, we present self-gating float (SG-Float), algorithm hardware co-design of a novel binary number format, which can significantly reduce memory access and computing power requirements in CNNs. SG-Float is a self-gating format that uses the exponent to self-gate the mantissa to zero, exploiting the characteristic of floating-point that the exponent determines the magnitude of a floating-point value and the error tolerance property of CNNs. SG-Float represents relatively small values using only the exponent, which increases the proportion of ineffective mantissas, corresponding to reducing mantissa multiplications of floating-point numbers. To minimize the accuracy loss caused by the approximation error introduced by SG-Float, we propose a fine-tuning process to determine the exponent thresholds of SG-Float and reclaim the accuracy loss. We also develop a hardware optimization technique, called the SG-Float buffering strategy, to best match SG-Float with CNN accelerators and further reduce memory access. We apply the SG-Float buffering strategy to vector-vector multiplication processing elements (PEs), which NVDLA adopts, in TSMC 40nm technology. Our evaluation results demonstrate that SG-Float can achieve up to 35% reduction in memory access power and up to 54% reduction in computing power compared with AdaptivFloat, a state-of-the-art format, with negligible power and area overhead. Additionally, we show that SG-Float can be combined with neural network pruning methods to further reduce memory access and mantissa multiplications in pruned CNN models. Overall, our work shows that SG-Float is a promising solution to the problem of CNN memory access and computing power.

Funder

NSTC

MOE

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3