Cross-domain Recommendation with Bridge-Item Embeddings

Author:

Gao Chen1ORCID,Li Yong1,Feng Fuli2,Chen Xiangning1,Zhao Kai1,He Xiangnan3,Jin Depeng1

Affiliation:

1. Tsinghua University, Beijing, China

2. National University of Singapore, Singapore

3. University of Science and Technology of China, Hefei, China

Abstract

Web systems that provide the same functionality usually share a certain amount of items. This makes it possible to combine data from different websites to improve recommendation quality, known as the cross-domain recommendation task. Despite many research efforts on this task, the main drawback is that they largely assume the data of different systems can be fully shared . Such an assumption is unrealistic different systems are typically operated by different companies, and it may violate business privacy policy to directly share user behavior data since it is highly sensitive. In this work, we consider a more practical scenario to perform cross-domain recommendation. To avoid the leak of user privacy during the data sharing process, we consider sharing only the information of the item side, rather than user behavior data. Specifically, we transfer the item embeddings across domains, making it easier for two companies to reach a consensus (e.g., legal policy) on data sharing since the data to be shared is user-irrelevant and has no explicit semantics. To distill useful signals from transferred item embeddings, we rely on the strong representation power of neural networks and develop a new method named as NATR (short for N eural A ttentive T ransfer R ecommendation ). We perform extensive experiments on two real-world datasets, demonstrating that NATR achieves similar or even better performance than traditional cross-domain recommendation methods that directly share user-relevant data. Further insights are provided on the efficacy of NATR in using the transferred item embeddings to alleviate the data sparsity issue.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HeteLFX: Heterogeneous recommendation with latent feature extraction;Electronic Commerce Research and Applications;2024-09

2. A systematic review of the literature on deep learning approaches for cross-domain recommender systems;Decision Analytics Journal;2024-09

3. Transferring Causal Mechanism over Meta-representations for Target-Unknown Cross-domain Recommendation;ACM Transactions on Information Systems;2024-03-22

4. Mixed Attention Network for Cross-domain Sequential Recommendation;Proceedings of the 17th ACM International Conference on Web Search and Data Mining;2024-03-04

5. Latent mutual feature extraction for cross-domain recommendation;Knowledge and Information Systems;2024-02-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3