Meta-Learning to Improve Unsupervised Intrusion Detection in Cyber-Physical Systems

Author:

Zoppi Tommaso1,Gharib Mohamad1,Atif Muhammad1,Bondavalli Andrea1

Affiliation:

1. Dept. of Mathematics and Informatics, University of Florence, Florence - Italy

Abstract

Artificial Intelligence (AI)- based classifiers rely on Machine Learning (ML) algorithms to provide functionalities that system architects are often willing to integrate into critical Cyber-Physical Systems (CPSs) . However, such algorithms may misclassify observations, with potential detrimental effects on the system itself or on the health of people and of the environment. In addition, CPSs may be subject to threats that were not previously known, motivating the need for building Intrusion Detectors (IDs) that can effectively deal with zero-day attacks. Different studies were directed to compare misclassifications of various algorithms to identify the most suitable one for a given system. Unfortunately, even the most suitable algorithm may still show an unsatisfactory number of misclassifications when system requirements are strict. A possible solution may rely on the adoption of meta-learners, which build ensembles of base-learners to reduce misclassifications and that are widely used for supervised learning. Meta-learners have the potential to reduce misclassifications with respect to non-meta learners: however, misleading base-learners may let the meta-learner leaning towards misclassifications and therefore their behavior needs to be carefully assessed through empirical evaluation. To such extent, in this paper we investigate, expand, empirically evaluate, and discuss meta-learning approaches that rely on ensembles of unsupervised algorithms to detect (zero-day) intrusions in CPSs. Our experimental comparison is conducted by means of public datasets belonging to network intrusion detection and biometric authentication systems, which are common IDSs for CPSs. Overall, we selected 21 datasets, 15 unsupervised algorithms and 9 different meta-learning approaches. Results allow discussing the applicability and suitability of meta-learning for unsupervised anomaly detection, comparing metric scores achieved by base algorithms and meta-learners. Analyses and discussion end up showing how the adoption of meta-learners significantly reduces misclassifications when detecting (zero-day) intrusions in CPSs.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3