Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape

Author:

Zoppi Tommaso1ORCID,Ceccarelli Andrea1,Capecchi Tommaso1,Bondavalli Andrea1

Affiliation:

1. Dept. of Mathematics and Informatics, University of Florence, Italy

Abstract

Anomaly detection aims at identifying unexpected fluctuations in the expected behavior of a given system. It is acknowledged as a reliable answer to the identification of zero-day attacks to such extent, several ML algorithms that suit for binary classification have been proposed throughout years. However, the experimental comparison of a wide pool of unsupervised algorithms for anomaly-based intrusion detection against a comprehensive set of attacks datasets was not investigated yet. To fill such gap, we exercise 17 unsupervised anomaly detection algorithms on 11 attack datasets. Results allow elaborating on a wide range of arguments, from the behavior of the individual algorithm to the suitability of the datasets to anomaly detection. We conclude that algorithms as Isolation Forests, One-Class Support Vector Machines, and Self-Organizing Maps are more effective than their counterparts for intrusion detection, while clustering algorithms represent a good alternative due to their low computational complexity. Further, we detail how attacks with unstable, distributed, or non-repeatable behavior such as Fuzzing, Worms, and Botnets are more difficult to detect. Ultimately, we digress on capabilities of algorithms in detecting anomalies generated by a wide pool of unknown attacks, showing that achieved metric scores do not vary with respect to identifying single attacks.

Publisher

Association for Computing Machinery (ACM)

Reference64 articles.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3