Diversifying Citation Recommendations

Author:

Küçüktunç Onur1,Saule Erik2,Kaya Kamer1,Çatalyürek Ümit V.1

Affiliation:

1. The Ohio State University

2. University of North Carolina at Charlotte

Abstract

Literature search is one of the most important steps of academic research. With more than 100,000 papers published each year just in computer science, performing a complete literature search becomes a Herculean task. Some of the existing approaches and tools for literature search cannot compete with the characteristics of today’s literature, and they suffer from ambiguity and homonymy. Techniques based on citation information are more robust to the mentioned issues. Thus, we recently built a Web service called the advisor, which provides personalized recommendations to researchers based on their papers of interest. Since most recommendation methods may return redundant results, diversifying the results of the search process is necessary to increase the amount of information that one can reach via an automated search. This article targets the problem of result diversification in citation-based bibliographic search, assuming that the citation graph itself is the only information available and no categories or intents are known. The contribution of this work is threefold. We survey various random walk--based diversification methods and enhance them with the direction awareness property to allow users to reach either old, foundational (possibly well-cited and well-known) research papers or recent (most likely less-known) ones. Next, we propose a set of novel algorithms based on vertex selection and query refinement. A set of experiments with various evaluation criteria shows that the proposed γ-RLM algorithm performs better than the existing approaches and is suitable for real-time bibliographic search in practice.

Funder

National Cancer Institute

Division of Computer and Network Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3