Incremental Refinement of Relevance Rankings: Introducing a New Method Supported with Pennant Retrieval

Author:

AKBULUT Müge1,TONTA Yaşar2

Affiliation:

1. Ankara Yıldırım Beyazıt Üniversitesi

2. HACETTEPE ÜNİVERSİTESİ

Abstract

Purpose: Relevance ranking algorithms rank retrieved documents based on the degrees of topical similarity (relevance) between search queries and documents. This paper aims to introduce a new relevance ranking method combining a probabilistic topic modeling algorithm with the “pennant retrieval” method using citation data. Data and Method: We applied this method to the iSearch corpus consisting of c. 435,000 physics papers. We first ran the topic modeling algorithm on titles and summaries of all papers for 65 search queries and obtained the relevance ranking lists. We then used the pennant retrieval to fuse the citation data with the existing relevance rankings, thereby incrementally refining the results. The outcome produced better relevance rankings with papers covering various aspects of the topic searched as well as the more marginal ones. The Maximal Marginal Relevance (MMR) algorithm was used to evaluate the retrieval performance of the proposed method by finding out its effect on relevance ranking algorithms that we used. Findings: Findings suggest that the terms used in different contexts in the papers might sometimes be overlooked by the topic modeling algorithm. Yet, the fusion of citation data to relevance ranking lists provides additional contextual information, thereby further enriching the results with diverse (interdisciplinary) papers of higher relevance. Moreover, results can easily be re-ranked and personalized. Implications: We argue that once it is tested on dynamic corpora for computational load, robustness, replicability, and scalability, the proposed method can in time be used in both local and international information systems such as TR-Dizin, Web of Science, and Scopus. Originality: The proposed method is, as far as we know, the first one that shows that relevance rankings produced with a topic modeling algorithm can be incrementally refined using pennant retrieval techniques based on citation data.

Publisher

Turk Kutuphaneciligi - Turkish Librarianship

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3