On Obstructing Obscenity Obfuscation

Author:

Rojas-Galeano Sergio1

Affiliation:

1. Universidad Distrital FJC, Bogotá, Colombia

Abstract

Obscenity (the use of rude words or offensive expressions) has spread from informal verbal conversations to digital media, becoming increasingly common on user-generated comments found in Web forums, newspaper user boards, social networks, blogs, and media-sharing sites. The basic obscenity-blocking mechanism is based on verbatim comparisons against a blacklist of banned vocabulary; however, creative users circumvent these filters by obfuscating obscenity with symbol substitutions or bogus segmentations that still visually preserve the original semantics, such as writing shit as $h¡;t or s.h.i.t or even worse mixing them as $.h….¡.t . The number of potential obfuscated variants is combinatorial, yielding the verbatim filter impractical. Here we describe a method intended to obstruct this anomaly inspired by sequence alignment algorithms used in genomics, coupled with a tailor-made edit penalty function. The method only requires to set up the vocabulary of plain obscenities; no further training is needed. Its complexity on screening a single obscenity is linear, both in runtime and memory, on the length of the user-generated text. We validated the method on three different experiments. The first one involves a new dataset that is also introduced in this article; it consists of a set of manually annotated real-life comments in Spanish, gathered from the news user boards of an online newspaper, containing this type of obfuscation. The second one is a publicly available dataset of comments in Portuguese from a sports Web site. In these experiments, at the obscenity level, we observed recall rates greater than 90%, whereas precision rates varied between 75% and 95%, depending on their sequence length (shorter lengths yielded a higher number of false alarms). On the other hand, at the comment level, we report recall of 86%, precision of 91%, and specificity of 98%. The last experiment revealed that the method is more effective in matching this type of obfuscation compared to the classical Levenshtein edit distance. We conclude discussing the prospects of the method to help enforcing moderation rules of obscenity expressions or as a preprocessing mechanism for sequence cleaning and/or feature extraction in more sophisticated text categorization techniques.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference60 articles.

1. Youssef Bassil and Paul Semaan. 2012. ASR context-sensitive error correction based on Microsoft n-gram dataset. arXiv:1203.5262. Youssef Bassil and Paul Semaan. 2012. ASR context-sensitive error correction based on Microsoft n-gram dataset. arXiv:1203.5262.

2. Approximate regular expression matching with multi-strings

3. Cyber Hate Speech on Twitter: An Application of Machine Classification and Statistical Modeling for Policy and Decision Making

4. Us and them: identifying cyber hate on Twitter across multiple protected characteristics

5. Knowledge-Based Approaches to Concept-Level Sentiment Analysis

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3