Author:
Niemann Marco,Assenmacher Dennis,Brunk Jens,Riehle Dennis M.,Trautmann Heike,Becker Jörg
Publisher
Springer Fachmedien Wiesbaden
Reference90 articles.
1. Aken, B. van, Risch, J., Krestel, R., & Löser, A. (2018). Challenges for toxic comment classification: An in-depth error analysis. In D. Fišer, R. Huang, V. Prabhakaran, R. Voigt, Z. Waseem, & J Wernimont (Hrsg.), Proceedings of the second workshop on abusive language online (S. 33–42). ALW2. Association for Computational Linguistics.
2. Anzovino, M., Fersini, E., & Rosso, P. (2018). Automatic identification and classification of misogynistic language on Twitter. In M. Silberztein, F. Atigui, E. Kornyshova, E. Métais, & F. Meziane (Hrsg.), Proceedings of the 23rd international conference on applications of natural language to information systems (S. 57–64). NLDB 2018. Springer.
3. Badjatiya, P., Gupta, S., Gupta, M., & Varma, V. (2017). Deep learning for hate speech detection in tweets. In Proceedings of the 26th international conference on world wide web companion (S. 759–760). WWW’17 Companion. International World Wide Web Conferences Steering Committee.
4. Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with subword information. arXiv: 1607.04606 [cs.CL].
5. Bretschneider, U., Wöhner, T., & Peters, R. (2014). Detecting online harassment in social networks. In M. D. Myers & D. W. Straub (Hrsg.), Proceedings of the international conference on information systems – Building a better world through information systems (S. 1–14). ICIS 2014. Association for Information Systems.