Momentum

Author:

Balsamo Domenico1,Fletcher Benjamin J.1,Weddell Alex S.1,Karatziolas Giorgos1,Al-Hashimi Bashir M.1,Merrett Geoff V.1

Affiliation:

1. University of Southampton, UK

Abstract

Recent research has looked to supplement or even replace the batteries in embedded computing systems with energy harvesting, where energy is derived from the device’s environment. However, such supplies are generally unpredictable and highly variable, and hence systems typically incorporate large external energy buffers (e.g., supercapacitors) to sustain computation; however, these pose environmental issues and increase system size and cost. This article proposes Momentum , a general power-neutral methodology, with intrinsic system-wide maximum power point tracking, that can be applied to a wide range of different computing systems, where the system dynamically scales its performance (and hence power consumption) to optimize computational progress depending on the power availability. Momentum enables the system to operate around an efficient operating voltage, maximizing forward application execution, without adding any external tracking or control units. This methodology combines at runtime (1) a hierarchical control strategy that utilizes available power management controls (such as dynamic voltage and frequency scaling, and core hot-plugging) to achieve efficient power-neutral operation; (2) a software-based maximum power point tracking scheme (unlike existing approaches, this does not require any additional hardware), which adapts the system power consumption so that it can work at the optimal operating voltage, considering the efficiency of the entire system rather than just the energy harvester; and (3) experimental validation on two different scales of computing system: a low power microcontroller (operating from the already-present 4.7μF decoupling capacitance) and a multi-processor system-on-chip (operating from 15.4mF added capacitance). Experimental results from both a controlled supply and energy harvesting source show that Momentum operates correctly on both platforms and exhibits improvements in forward application execution of up to 11% when compared to existing power-neutral approaches and 46% compared to existing static approaches.

Funder

UK Engineering and Physical Sciences Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application-aware Energy Attack Mitigation in the Battery-less Internet of Things;Proceedings of the Int'l ACM Symposium on Mobility Management and Wireless Access;2023-10-30

2. Sustainable Application Support in Battery-Less IoT Sensing Network System;2023 IEEE International Conference on Communications Workshops (ICC Workshops);2023-05-28

3. Mechanical and Electrical Energy Buffer-release Mechanisms for Motion-powered IoT Applications;2023 IEEE International Symposium on Circuits and Systems (ISCAS);2023-05-21

4. PES: An Energy and Throughput Model for Energy Harvesting IoT Systems;2023 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS);2023-04

5. Mesh Networking for Intermittently Powered Devices: Architecture and Challenges;IEEE Network;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3