Power management in energy harvesting sensor networks

Author:

Kansal Aman1,Hsu Jason1,Zahedi Sadaf1,Srivastava Mani B.1

Affiliation:

1. University of California, Los Angeles, California

Abstract

Power management is an important concern in sensor networks, because a tethered energy infrastructure is usually not available and an obvious concern is to use the available battery energy efficiently. However, in some of the sensor networking applications, an additional facility is available to ameliorate the energy problem: harvesting energy from the environment. Certain considerations in using an energy harvesting source are fundamentally different from that in using a battery, because, rather than a limit on the maximum energy, it has a limit on the maximum rate at which the energy can be used. Further, the harvested energy availability typically varies with time in a nondeterministic manner. While a deterministic metric, such as residual battery, suffices to characterize the energy availability in the case of batteries, a more sophisticated characterization may be required for a harvesting source. Another issue that becomes important in networked systems with multiple harvesting nodes is that different nodes may have different harvesting opportunity. In a distributed application, the same end-user performance may be achieved using different workload allocations, and resultant energy consumptions at multiple nodes. In this case, it is important to align the workload allocation with the energy availability at the harvesting nodes. We consider the above issues in power management for energy-harvesting sensor networks. We develop abstractions to characterize the complex time varying nature of such sources with analytically tractable models and use them to address key design issues. We also develop distributed methods to efficiently use harvested energy and test these both in simulation and experimentally on an energy-harvesting sensor network, prototyped for this work.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference57 articles.

1. Chang J.-H. and Tassiulas L. 2000. Maximum lifetime routing in wireless sensor networks. In Advanced Telecommunications and Information Distribution Research Program (ATIRP). College Park MD. 10.1109/TNET.2004.833122 Chang J.-H. and Tassiulas L. 2000. Maximum lifetime routing in wireless sensor networks. In Advanced Telecommunications and Information Distribution Research Program (ATIRP). College Park MD. 10.1109/TNET.2004.833122

2. Prediction by Exponentially Weighted Moving Averages and Related Methods

3. A calculus for network delay. I. Network elements in isolation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3