A Cross-Layer Approach for Early-Stage Power Grid Design and Optimization

Author:

Zhuo Cheng1,Gan Houle1,Shih Wei-Kai1,Aydiner Alaeddin A.1

Affiliation:

1. Intel Corporation, Hillsboro, OR

Abstract

Power integrity has become increasingly important for sub-32nm designs. Many prior works have discussed power grid design and optimization in the post-layout stage, when design change is inevitably expensive and difficult. In contrast, during the early stage of a development cycle, designers have more flexibility to improve the design quality. However, there are several fundamental challenges at early stage when the design database is not complete, including extraction, modeling, and optimization. This article tackles these fundamental issues of early-stage power grid design from architecture to layout. The proposed methods have been silicon validated on 32nm on-market chips and successfully applied to a 22nm design for its early-stage power grid design. The findings from such practices reveal that, for sub-32nm chips, an intrinsic on-die capacitance and power gate scheme may have more significant impact than expected on power integrity, and needs to be well addressed at early stage.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Agile Full-Chip Sign-Off in the Post-Moore Era;2023 China Semiconductor Technology International Conference (CSTIC);2023-06-26

2. Revisiting EAVP for Power Delivery Decoupling Optimization;2019 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo);2019-10

3. From Layout to System: Early Stage Power Delivery and Architecture Co-Exploration;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2019-07

4. Noise-aware DVFS transition sequence optimization for battery-powered IoT devices;Proceedings of the 55th Annual Design Automation Conference;2018-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3