Algorithm 933

Author:

Foster Leslie V.1,Davis Timothy A.2

Affiliation:

1. San Jose State University, San Jose, CA

2. University of Florida, Gainesville, FL

Abstract

The SPQR_RANK package contains routines that calculate the numerical rank of large, sparse, numerically rank-deficient matrices. The routines can also calculate orthonormal bases for numerical null spaces, approximate pseudoinverse solutions to least squares problems involving rank-deficient matrices, and basic solutions to these problems. The algorithms are based on SPQR from SuiteSparseQR (ACM Transactions on Mathematical Software 38, Article 8, 2011). SPQR is a high-performance routine for forming QR factorizations of large, sparse matrices. It returns an estimate for the numerical rank that is usually, but not always, correct. The new routines improve the accuracy of the numerical rank calculated by SPQR and reliably determine the numerical rank in the sense that, based on extensive testing with matrices from applications, the numerical rank is almost always accurately determined when our methods report that the numerical rank should be correct. Reliable determination of numerical rank is critical to the other calculations in the package. The routines work well for matrices with either small or large null space dimensions.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prestressed elasticity of amorphous solids;Physical Review Research;2022-12-12

2. Algorithm 1021: SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-looking Integer-preserving LU Factorization;ACM Transactions on Mathematical Software;2022-05-26

3. STM-multifrontal QR;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2021-11-13

4. Fast Physics-Based Electromigration Analysis for Full-Chip Networks by Efficient Eigenfunction-Based Solution;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2021-03

5. Geometric continuity constraints of automatically derived parametrisations in CAD-based shape optimisation;International Journal of Computational Fluid Dynamics;2019-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3