X-Class

Author:

Costa Gianni1,Ortale Riccardo1,Ritacco Ettore1

Affiliation:

1. ICAR-CNR

Abstract

The supervised classification of XML documents by structure involves learning predictive models in which certain structural regularities discriminate the individual document classes. Hitherto, research has focused on the adoption of prespecified substructures. This is detrimental for classification effectiveness, since the a priori chosen substructures may not accord with the structural properties of the XML documents. Therein, an unexplored question is how to choose the type of structural regularity that best adapts to the structures of the available XML documents. We tackle this problem through X-Class, an approach that handles all types of tree-like substructures and allows for choosing the most discriminatory one. Algorithms are designed to learn compact rule-based classifiers in which the chosen substructures discriminate the classes of XML documents. X-Class is studied across various domains and types of substructures. Its classification performance is compared against several rule-based and SVM-based competitors. Empirical evidence reveals that the classifiers induced by X-Class are compact, scalable, and at least as effective as the established competitors. In particular, certain substructures allow the induction of very compact classifiers that generally outperform the rule-based competitors in terms of effectiveness over all chosen corpora of XML data. Furthermore, such classifiers are substantially as effective as the SVM-based competitor, with the additional advantage of a high-degree of interpretability.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference78 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3