An efficient on-the-fly cycle collection

Author:

Paz Harel1,Bacon David F.2,Kolodner Elliot K.3,Petrank Erez1,Rajan V. T.2

Affiliation:

1. Technion -- Israel Institute of Technology, Haifa, Israel

2. IBM T. J. Watson Research Center, Yorktown Heights, NY

3. IBM Haifa Research Lab, Haifa, Israel

Abstract

A reference-counting garbage collector cannot reclaim unreachable cyclic structures of objects. Therefore, reference-counting collectors either use a backup tracing collector infrequently, or employ a cycle collector to reclaim cyclic structures. We propose a new concurrent cycle collector, one that runs concurrently with the program threads, imposing negligible pauses (of around 1ms) on a multiprocessor. Our new collector combines a state-of-the-art cycle collector [Bacon and Rajan 2001] with sliding-views collectors [Levanoni and Petrank 2001, 2006; Azatchi et al. 2003]. The use of sliding views for cycle collection yields two advantages. First, it drastically reduces the number of cycle candidates, which in turn drastically reduces the work required to record and trace these candidates. Consequentially, a large improvement in cycle collection efficiency is achieved. Second, it eliminates the theoretical termination problem that appeared in the earlier concurrent cycle collector. There, a rare race may delay the reclamation of an unreachable cyclic structure forever. The sliding-views cycle collector guarantees reclamation of all unreachable cyclic structures. The proposed collector was implemented on the Jikes RVM and we provide measurements including a comparison between the use of backup tracing and the use of cycle collection with reference counting. To the best of our knowledge, such a comparison has not been reported before.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference46 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On a possible embedding of Lisp into the C language;Keldysh Institute Preprints;2022

2. A Study on Garbage Collection Algorithms for Big Data Environments;ACM Computing Surveys;2019-01-31

3. Biased reference counting;Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques;2018-11

4. Concurrent, parallel garbage collection in linear time;ACM SIGPLAN Notices;2015-05-11

5. Cyclic reference counting by typed reference fields;Computer Languages, Systems & Structures;2012-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3