A Study on Garbage Collection Algorithms for Big Data Environments

Author:

Bruno Rodrigo1ORCID,Ferreira Paulo1

Affiliation:

1. INESC-ID/Instituto Superior Técnico, University of Lisbon, Portugal

Abstract

The need to process and store massive amounts of data—Big Data—is a reality. In areas such as scientific experiments, social networks management, credit card fraud detection, targeted advertisement, and financial analysis, massive amounts of information are generated and processed daily to extract valuable, summarized information. Due to its fast development cycle (i.e., less expensive to develop), mainly because of automatic memory management, and rich community resources, managed object-oriented programming languages (e.g., Java) are the first choice to develop Big Data platforms (e.g., Cassandra, Spark) on which such Big Data applications are executed. However, automatic memory management comes at a cost. This cost is introduced by the garbage collector, which is responsible for collecting objects that are no longer being used. Although current (classic) garbage collection algorithms may be applicable to small-scale applications, these algorithms are not appropriate for large-scale Big Data environments, as they do not scale in terms of throughput and pause times. In this work, current Big Data platforms and their memory profiles are studied to understand why classic algorithms (which are still the most commonly used) are not appropriate, and also to analyze recently proposed and relevant memory management algorithms, targeted to Big Data environments. The scalability of recent memory management algorithms is characterized in terms of throughput (improves the throughput of the application) and pause time (reduces the latency of the application) when compared to classic algorithms. The study is concluded by presenting a taxonomy of the described works and some open problems, with regard to Big Data memory management, that could be addressed in future works.

Funder

FCT scholarships

Fundação para a Ciência e a Tecnologia

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3